Skip to main content

HISTORY OF VULCANICITY




                                            
VULCANICITY (also known as volcanic activity or igneous activity) is one of the endogenetic processes.
Magma under the crust is under very great pressure. When folding and faulting occur, cracks or fractures which are lines of weakness are created. When these lines of weakness develop downward in the crust and reach the magma, they will release the pressure in the magma.
This allows magma to rise up along the lines of weakness and intrude into the crust. Some magma may even reach the earth's surface.
 VOLCANICITY:
Also refers to the ways by which magma is intruded into the earth’s crust. Through fracture, fissures found into the crust magma found inside the crust can sometimes reach the surface of the crust and consolidate from there. In this case the features formed are Extrusive features. Some other times magma can fail to reach the earth’s surface and consolidate inside the crust before it reaches the surface. In this case the features formed are known as Intrusive features
There are two types of vulcanicity: intrusive and extrusive. Intrusive vulcanicity
The main feature of the Devils Tower National Monument was created via intrusion.
Intrusive vulcanicity refers to magma (molten rock) being forced into the rocks that make up the Earth's crust.
It occurs when there are lines of weakness such as faults, joints, or bedding planes in the crust. Then magma enters these lines of weakness. When it cools and become solid while still underground, different features called plutons are formed. The rock formed is intrusive igneous rock.
These plutons will be exposed at the surface of land when the overlying rocks are removed after a long time of denudation (laid bare by erosion).
Major features formed by intrusive vulcanicity include: batholith, laccolith, dike, pipe and sill.
EXTRUSIVE VULCANICITY
 Vulcanicity:
This is the processes by which molten materials from the mantle (magma) are intruded into the Earth’s crust but also extrud Vulcanicity:



This is the processes by which molten materials from the mantle (magma) are intruded into the Earth’s crust but also extruded from the Crust

CAUSES OF VOLCANICITY AND VOLCANIC ERUPTION.

The causes of volcanicity and volcanic eruption can include:
Increased quantity of magma in the mantle leading to increase to pressure pushing this magma out wards.
Presence of fissure and cracks allowing magma to move towards the crust.
Increase in the temperature of magma inside making the magma very light to move along a crack.
Increase in the vent allowing a big quantity of magma to move in at once.

VOLCANOES

volcano is a rupture on the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.
Earth's volcanoes occur because its crust is broken into 17 major, rigid tectonic plates that float on a hotter, softer layer in its mantle.[1] Therefore, on Earth, volcanoes are generally found where tectonic plates are diverging or converging. For example, a mid-oceanic ridge, such as the Mid-Atlantic Ridge, has volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has volcanoes caused by convergent tectonic plates coming together. Volcanoes can also form where there is stretching and thinning of the crust's interior plates, e.g., in the East African Rift and the Wells Gray-Clearwater volcanic field and Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "plate hypothesis" volcanism.[2] Volcanism away from plate boundaries has also been explained as mantle plumes. These so-called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Volcanoes are usually not created where two tectonic plates slide past one another.
Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. One such hazard is that volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature; the melted particles then adhere to the turbine blades and alter their shape, disrupting the operation of the turbine. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere (or troposphere); however, they also absorb heat radiated up from the Earth, thereby warming the upper atmosphere (or stratosphere). Historically, so-called volcanic winters have caused catastrophic famines

Etymology

The word volcano is derived from the name of Vulcano, a volcanic island in the Aeolian Islands of Italy whose name in turn originates from Vulcan, the name of a god of fire in Roman mythology. The study of volcanoes is called volcanology, sometimes spelled vulcanology.

Divergent plate boundaries Main article: Divergent boundary

At the mid-oceanic ridges, two tectonic plates diverge from one another as new oceanic crust is formed by the cooling and solidifying of hot molten rock. Because the crust is very thin at these ridges due to the pull of the tectonic plates, the release of pressure leads to adiabatic expansion and the partial melting of the mantle, causing volcanism and creating new oceanic crust. Most divergent plate boundaries are at the bottom of the oceans; therefore, most volcanic activity is submarine, forming new seafloor. Black smokers (also known as deep sea vents) are an example of this kind of volcanic activity. Where the mid-oceanic ridge is above sea-level, volcanic islands are formed, for example, Iceland.

Convergent plate boundaries Main article: Convergent boundary

Subduction zones are places where two plates, usually an oceanic plate and a continental plate, collide. In this case, the oceanic plate subducts, or submerges under the continental plate forming a deep ocean trench just offshore. In a process called flux melting, water released from the subducting plate lowers the melting temperature of the overlying mantle wedge, creating magma. This magma tends to be very viscous due to its high silica content, so often does not reach the surface and cools at depth. When it does reach the surface, a volcano is formed. Typical examples of this kind of volcano are Mount Etna and the volcanoes in the Pacific Ring of Fire.

"Hotspots" Main article: Hotspot (geology)

"Hotspots" is the name given to volcanic areas believed to be formed by mantle plumes, which are hypothesized to be columns of hot material rising from the core-mantle boundary in a fixed space that causes large-volume melting. Because tectonic plates move across them, each volcano becomes dormant and is eventually reformed as the plate advances over the postulated plume. The Hawaiian Islands have been suggested to have been formed in such a manner, as well as the Snake River Plain, with the Yellowstone Caldera being the part of the North American plate currently above the hot spot. This theory is currently under criticism, however.

Volcanic features

 

Skjaldbreiður, a shield volcano whose name means "broad shield"
The most common perception of a volcano is of a conical mountain, spewing lava and poisonous gases from a crater at its summit; however, this describes just one of the many types of volcano. The features of volcanoes are much more complicated and their structure and behavior depends on a number of factors. Some volcanoes have rugged peaks formed by lava domes rather than a summit crater while others have landscape features such as massive plateaus. Vents that issue volcanic material (including lava and ash) and gases (mainly steam and magmatic gases) can develop anywhere on the landform and may give rise to smaller cones such as Puʻu ʻŌʻō on a flank of Hawaii's Kīlauea. Other types of volcano include cryovolcanoes (or ice volcanoes), particularly on some moons of Jupiter, Saturn, and Neptune; and mud volcanoes, which are formations often not associated with known magmatic activity. Active mud volcanoes tend to involve temperatures much lower than those of igneous volcanoes except when the mud volcano is actually a vent of an igneous volcano.
Volcanic fissure vents are flat, linear fractures through which lava emerges.

Shield volcanoes Main article: Shield volcano

Shield volcanoes, so named for their broad, shield-like profiles, are formed by the eruption of low-viscosity lava that can flow a great distance from a vent. They generally do not explode catastrophically. Since low-viscosity magma is typically low in silica, shield volcanoes are more common in oceanic than continental settings. The Hawaiian volcanic chain is a series of shield cones, and they are common in Iceland, as well.

Lava domes Main article: Lava dome

Lava domes are built by slow eruptions of highly viscous lava. They are sometimes formed within the crater of a previous volcanic eruption, as in the case of Mount Saint Helens, but can also form independently, as in the case of Lassen Peak. Like stratovolcanoes, they can produce violent, explosive eruptions, but their lava generally does not flow far from the originating vent.

Cryptodomes

Cryptodomes are formed when viscous lava is forced upward causing the surface to bulge. The 1980 eruption of Mount St. Helens was an example; lava beneath the surface of the mountain created an upward bulge which slid down the north side of the mountain.

Volcanic cones (cinder cones)

Main articles: volcanic cone and Cinder cone
Izalco (volcano), located in the Cordillera de Apaneca volcanic range complex in El Salvador. Only a few generations old, Izalco is the youngest and best known cone volcano. Izalco erupted almost continuously from 1770 (when it formed) to 1958, earning it the nickname of "Lighthouse of the Pacific".
Volcanic cones or cinder cones result from eruptions of mostly small pieces of scoria and pyroclastics (both resemble cinders, hence the name of this volcano type) that build up around the vent. These can be relatively short-lived eruptions that produce a cone-shaped hill perhaps 30 to 400 meters high. Most cinder cones erupt only once. Cinder cones may form as flank vents on larger volcanoes, or occur on their own. Parícutin in Mexico and Sunset Crater in Arizona are examples of cinder cones. In New Mexico, Caja del Rio is a volcanic field of over 60 cinder cones.
Based on satellite images it was suggested that cinder cones might occur on other terrestrial bodies in the Solar system too; on the surface of Mars and the Moon.
Strato volcanoes or composite volcanoes are tall conical mountains composed of lava flows and other ejecta in alternate layers, the strata that gives rise to the name. Stratovolcanoes are also known as composite volcanoes because they are created from multiple structures during different kinds of eruptions. Strato/composite volcanoes are made of cinders, ash, and lava. Cinders and ash pile on top of each other, lava flows on top of the ash, where it cools and hardens, and then the process repeats. Classic examples include Mt. Fuji in Japan, Mayon Volcano in the Philippines, and Mount Vesuvius and Stromboli in Italy.
Throughout recorded history, ash produced by the explosive eruption of stratovolcanoes has posed the greatest volcanic hazard to civilizations. Not only do stratovolcanoes have greater pressure build up from the underlying lava flow than shield volcanoes, but their fissure vents and monogenetic volcanic fields (volcanic cones) have more powerful eruptions, as they are many times under extension. They are also steeper than shield volcanoes, with slopes of 30–35° compared to slopes of generally 5–10°, and their loose tephra are material for dangerous lahars.[8] Large pieces of tephra are called volcanic bombs. Big bombs can measure more than 4 feet(1.2 meters) across and weigh several tons.[9]

Super volcanoes

Main article: Supervolcano
A super volcano usually has a large caldera and can produce devastation on an enormous, sometimes continental, scale. Such volcanoes are able to severely cool global temperatures for many years after the eruption due to the huge volumes of sulfur and ash released into the atmosphere. They are the most dangerous type of volcano. Examples include: Yellowstone Caldera in Yellowstone National Park and Valles Caldera in New Mexico (both western United States); Lake Taupo in New Zealand; Lake Toba in Sumatra, Indonesia; and Ngorongoro Crater in Tanzania. Because of the enormous area they may cover, supervolcanoes are hard to identify centuries after an eruption. Similarly, large igneous provinces are also considered supervolcanoes because of the vast amount of basalt lava erupted (even though the lava flow is non-explosive).

Submarine volcanoes Main article: Submarine volcano

Submarine volcanoes are common features of the ocean floor. In shallow water, active volcanoes disclose their presence by blasting steam and rocky debris high above the ocean's surface. In the ocean's deep, the tremendous weight of the water above prevents the explosive release of steam and gases; however, they can be detected by hydrophones and discoloration of water because of volcanic gases. Pillow lava is a common eruptive product of submarine volcanoes and is characterized by thick sequences of discontinuous pillow-shaped masses which form under water. Even large submarine eruptions may not disturb the ocean surface due to the rapid cooling effect and increased buoyancy of water (as compared to air) which often causes volcanic vents to form steep pillars on the ocean floor. Hydrothermal vents are common near these volcanoes, and some support peculiar ecosystems based on dissolved minerals. Over time, the formations created by submarine volcanoes may become so large that they break the ocean surface as new islands or floating pumice rafts.

Subglacial volcanoes Main article: Subglacial volcano

Subglacial volcanoes develop underneath icecaps. They are made up of flat lava which flows at the top of extensive pillow lavas and palagonite. When the icecap melts, the lava on top collapses, leaving a flat-topped mountain. These volcanoes are also called table mountains, tuyas, or (uncommonly) mobergs. Very good examples of this type of volcano can be seen in Iceland, however, there are also tuyas in British Columbia. The origin of the term comes from Tuya Butte, which is one of the several tuyas in the area of the Tuya River and Tuya Range in northern British
Columbia. Tuya Butte was the first such landform analyzed and so its name has entered the geological literature for this kind of volcanic formation. The Tuya Mountains Provincial Park was recently established to protect this unusual landscape, which lies north of Tuya Lake and south of the Jennings River near the boundary with the Yukon Territory.

Mud volcanoes

Main article: Mud volcano
Mud volcanoes or mud domes are formations created by geo-excreted liquids and gases, although there are several processes which may cause such activity. The largest structures are 10 kilometers in diameter and reach 700 meters high.

Erupted material